skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Bivalve transmissible neoplasia (BTN) is one of three known types of naturally transmissible cancer— cancers in which the whole cancer cells move from individual to individual, spreading through natural populations. BTN is a lethal leukemia-like cancer that has been observed throughout soft-shell clam (Mya arenaria) populations on the east coast of North America, with two distinct sublineages circulating at low enzootic levels in New England, USA, and Prince Edward Island, Canada. Major cancer outbreaks likely due toMya arenariaBTN (MarBTN) were reported in 1980s and the 2000s and the disease has been observed since the 1970s, but it has not been observed in populations of this clam species on the US west coast. In 2022, we collected soft-shell clams from several sites in Puget Sound, Washington, USA, and unexpectedly found high prevalence of BTN in two sites (Triangle Cove on Camano Island and near Stanwood in South Skagit Bay). Prevalence of BTN increased in subsequent years, reaching >75% in both sites in 2024, while it was not observed in other sites, suggesting the early stages of a severe disease outbreak following recent introduction. We observed that these cancer cells contain several somatic transposing insertion sites found only in the USA-sublineage of MarBTN, showing that it likely was recently transplanted from New England to this location. We then developed a sensitive environmental DNA (eDNA) assay, using qPCR to target somatic mutations in the MarBTN mitogenome, and showed that MarBTN can be detected in seawater at Triangle Cove, as well as several kilometers outside of the cove. We then used this assay to survey 50 sites throughout Puget Sound, confirming that the disease can be detected at high levels at Triangle Cove and South Skagit Bay, and showing that it extends beyond these known sites. However, while normal soft-shell clam mtDNA was widely detected, MarBTN was undetectable throughout most of Puget Sound and currently remains limited to the South Skagit Bay area and north Port Susan. These results identify a previously unknown severe outbreak of a transmissible cancer due to long-distance transplantation of disease from another ocean, and they demonstrate the utility of eDNA methods to track the spread of BTN through the environment. 
    more » « less
    Free, publicly-accessible full text available December 7, 2025
  2. Abstract Measurements of the carbon-to-oxygen (C/O) ratios of exoplanet atmospheres can reveal details about their formation and evolution. Recently, high-resolution cross-correlation analysis has emerged as a method of precisely constraining the C/O ratios of hot Jupiter atmospheres. We present two transits of the ultrahot Jupiter WASP-76b observed between 1.4 and 2.4μm with the high-resolution Immersion GRating INfrared Spectrometer on the Gemini-S telescope. We detected the presence of H2O, CO, and OH at signal-to-noise ratios of 6.93, 6.47, and 3.90, respectively. We performed two retrievals on this data set. A free retrieval for abundances of these three species retrieved a volatile metallicity of C + O H = 0.70 0.93 + 1.27 , consistent with the stellar value, and a supersolar carbon-to-oxygen ratio of C/O = 0.80 0.11 + 0.07 . We also ran a chemically self-consistent grid retrieval, which agreed with the free retrieval within 1σbut favored a slightly more substellar metallicity and solar C/O ratio ( C + O H = 0.74 0.17 + 0.23 and C/O = 0.59 0.14 + 0.13 ). A variety of formation pathways may explain the composition of WASP-76b. Additionally, we found systemic (Vsys) and Keplerian (Kp) velocity offsets which were broadly consistent with expectations from 3D general circulation models of WASP-76b, with the exception of a redshiftedVsysfor H2O. Future observations to measure the phase-dependent velocity offsets and limb differences at high resolution on WASP-76b will be necessary to understand the H2O velocity shift. Finally, we find that the population of exoplanets with precisely constrained C/O ratios generally trends toward super-solar C/O ratios. More results from high-resolution observations or JWST will serve to further elucidate any population-level trends. 
    more » « less
  3. null (Ed.)
  4. Abstract The UN's Paris Agreement goal of keeping global warming between 1.5 and 2°C is dangerously obsolete and needs to be replaced by a commitment to restore Earth's climate. We now know that continued use of fossil fuels associated with 1.5–2°C scenarios would result in hundreds of millions of pollution deaths and likely trigger multiple tipping elements in the Earth system. Unexpected advances in renewable power production and storage have radically expanded our climate response capacity. The cost of renewable technologies has plummeted at least 30‐year faster than projected, and renewables now dominate energy investment and growth. Thisrenewable revolutioncreates an opportunity and responsibility to raise our climate ambitions. Rather than aiming for climate mitigation—making things less bad—we should commit to climate restoration—a rapid return to Holocene‐like climate conditions where we know humanity and life on Earth can thrive. Based on observed and projected energy system trends, we estimate that the global economy could reach zero emissions by 2040 and potentially return atmospheric CO2to pre‐industrial levels by 2100–2150. However, this would require an intense and sustained rollout of renewable energy and negative emissions technologies on very large scales. We describe these clean electrification scenarios and outline technical and socioeconomic strategies that would increase the likelihood of restoring a Holocene‐like climate in the next 100 years. We invite researchers, policymakers, regulators, educators, and citizens in all countries to share and promote this positive message of climate restoration for human wellbeing and planetary stability. 
    more » « less